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Abstract. A class of generalised 6 - j  symbols, which enter naturally when a second pair of 
modes E + T~ is added to the octahedral Jahn-Teller system Ts x ( E  + T ~ ) .  has been evaluated 
for the group SO(5). The method involves the fictitious boson configurations d”d’ ,  and 
can be readily generalised to l w l ’ .  The resulting 6 - j  symbols for SO(21+ 1) can be used to 
produce others by means of generalisations of the equations satisfied by the ordinary 6 - j  
symbols for SO(3). Extensions to S 0 ( 2 1 + 2 )  and G2 are described, as well as the weight- 
space symmetries of Jucys. The relation between 6 - j  symbols and isoscalar factors is 
illustrated for SO(7)  3 G 2 .  

1. Introductioh 

It is now commonplace to find the groups S O ( n ) ,  U(n) and Sp(n), as well as the 
occasional exceptional group, put to use in such disparate fields as atomic spectroscopy, 
nuclear structure and particle physics. The application of the Wigner-Eckart theorem 
has made it essential to extend much of the algebra of angular momentum theory, for 
which the underlying group is SO(3) .  In particular, attention has been paid to the 
generalisation of the 3-j and 6-j symbols. Because this work is so widespread, it is 
not practicable to give a comprehensive list of references here; however, an impression 
of what has been done can be gained from the articles of Hecht (1965, 1967, 1970), 
Draayer and Akiyama (1973), Butler and Wybourne (1976), Bickerstaff and Wybourne 
(1981) and Haase and Butler (1985). We should also mention that an extensive 
tabulation of the 3-j and 6-j symbols for point groups has been made by Butler (1981). 

The chief difficulty in extending the theory for SO(3) to another Lie group G lies 
in the fact that a given irreducible representation (irrep) r of G may occur more than 
once in the decomposition of the Kronecker product r’ x r”. The coupling represented 
by (r‘r’’)r may therefore require an additional label r to separate multiply occurring 
representations r. The situation is further complicated for 3-j symbols if the irreps y 
of a subgroup H of G are taken to define the lower row of the 3-j symbol. Unlike the 
case for S0(3),  where an irrep of SO(2) (defined by a single number M )  occurs once 
or not at all in the irrep 9, of S0(3), it can happen that additional multiplicity labels 
are required when a given y occurs more than once in the decompostion of a 
particular r. 
0305-4470/86/132473 + 14$02.50 0 1986 The Institute of Physics 2473 
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2. The Jahn-Teller effect 

The need for multiplicity labels such as r effectively prevents explicit expressions being 
found for the general 3-j or 6- j  symbol. However, in our own work on the Jahn-Teller 
effect we have found that a large class of multiplicity-free 6- j  symbols for SO(5) enter 
naturally in the calculations. This particular Lie group arises when an electronic state 
is coupled equally to a fivefold degenerate set of vibrations represented by the direct 
sum E + r2 of irreps of the double octahedral group 0. A particular example for the 
electronic state is the fourfold degenerate irrep T8 of 0. As Pooler and O'Brien (1977) 
have shown, T8 and E + T ~  fit into the respective irreps (ff) and (10) of SO(5). 
(Throughout the present article we define an irrep of S0(21+ 1) by its highest weight.) 
A state of n phonons corresponds to the symmetric representation [ n ]  of U(5), which 
decomposes into the irreps (WO) of S 0 ( 5 ) ,  where w = n, n - 2 , .  . . , 1 or 0. A state of 
the total system can thus be written as 

where the final representation (w * i, i) results from the two options possible from a 
coupling of the phonon representation ( W O )  to the electronic state (if). 

To better approximate an actual cubic crystal, the effect of adding a second mode 
of the type E + r2 has been studied (Lister 1983). The state (1) generalises to 

in which (wlO)  and (w,O) are first coupled to ( w i  w;) before the coupling to the electronic 
state takes place. The Jahn-Teller Hamiltonian HJT is an SO(5) scalar and can be 
written as 

H , ~ =  h w , ( a : .  a , + ; ) + h w , ( a : .  a 2 + ~ ) + [ c l ( a : + a l ) + c z ( a : + a 2 ) ]  * T(") (3) 

where a; and ai create and annihilate the five phonon states of mode i, and T"') is a 
tensor acting in the electronic space for which we can conveniently choose the normali- 
sation 

(10) 11 ((ft)ll T I l (22 ) )  = 1. 

The terms in H,T involving w 1  and w 2  are diagonal with respect to the states ( 2 )  
and present no computational problem. An interaction term such as a: T('O), when 
sandwiched between a bra and a ket of type (2), yields the SO(5) 6- j  symbol 

which can be expressed in terms of the SO(5) 6- j  symbol 

(wyw;) (10) 

and the reduced matrix element 
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In considering the energy matrices it is natural to start with the most elementary 
and work up. Our attention so far has been limited to the two choices given by 

for the overall symmetry of the system. Thus w ;  = 0, 1 or 2, and w;  = 0 or 1. Similar 
ranges apply to w: and w;. Under these conditions the generalised 6-j symbols (4) 
and (6) are multiplicity-free. 

3. General method of evaluation 

The limitation (8) means that only a few special cases of the 6-j symbol (4) are required. 
They can all be obtained from the work of Hecht (1967). No bounds, however, are 
placed on the weights w1 and w2 appearing in the generalised symbol (6) other than 
a constraint on their difference Iw1-w21. It is to 6-j symbols of the type (6) that we 
therefore turn our attention. 

The obvious way to proceed is to follow the familiar analysis for SO(3). This 
entails first constructing Clebsch-Gordan ( C G )  coefficients using the recursion relations 
that parallel those of angular momentum theory. Two relations involving 6-j symbols 
are then used: one involves a sum over quadruple products of CG coefficients (Edmonds 
1957, equation (6.1.5)), while the other involves a sum over triple products (Judd 1963, 
equations (3)-(6)). This is a tedious procedure, and for groups other than SO(3) it is 
by no means apparent which group-subgroup chain is the most convenient to define' 
our states. For S 0 ( 5 ) ,  Hecht (1967) uses the group-subgroup chain SO(5) 2 U ( l )  x 
SU(2). This scheme affords a complete classification for the irreducible representations 
( W O )  and (1 l ) ,  but an additional classificatory symbol is required for the representations 
( w l )  when w > 1. In spite of this complication, preliminary calculations were carried 
out to evaluate the CG coefficients and their factored parts, the so-called isoscalar 
factors, for the SO(5) couplings (rT")r given by 

The isoscalar factors, taken with those of Hecht (1967), enabled the numerical evalu- 
ation of all the required 6-j symbols of the type (6) to be carried out (Lister 1983). 
On examining these results, it was found that they could be fitted to rather simple 
algebraic formulae. This motivated us to search for an alternative approach to the 
problem, one that would avoid having to make a specific choice of a group-subgroup 
chain, with all the complexities which that entails. 

It occurred to us to turn to the work of Racah (1942), where he introduced for the 
first time his celebrated W function, that is, an unsymmetrised 6-j symbol. The role 
of the W function in Racah's work was to express the matrix elements of operators 
of the type C',) C',"', i.e. operators that are formed by taking the scalar product of 
tensors transforming according to gk of SO(3) and acting separately on the two parts 
A and B of a coupled system. If we could invent an operator TkW' T(BW), scalar in 
S 0 ( 5 ) ,  whose two parts transform like the irrep W of S 0 ( 5 ) ,  and if, in addition, we 
could construct a system (possibly fictitious) whose bras and kets take the forms 
(( WA WB) W'I and I( Wk WL) W'), then the matrix elements of the operator would exhibit 
a dependence on W' specified (to within an arbitrary phase factor) by the SO(5) 6 9  
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symbol 

Merely to say that our matrix elements are proportional to (9) would be useless; we 
have also to be able to work them out reasonably easily by some other method. We 
might not have to repeat this calculation for every 6-j symbol, since the experience of 
Butler and Wybourne (1976) suggests that various equations that the 6-j symbols must 
satisfy can be put to use to generate other 6-j symbols. 

Of course, the argument used above to introduce (9) is implicit in the derivation 
of (4), but the representations appearing there are not suitable for the purposes that 
we now have in mind. Instead, we consider the boson configuration d ” d ’ ,  where d 
and d ‘  represent two inequivalent spin-free bosons for which 1 = 2. We introduce 
single-particle tensors UT) and u(gk) whose amplitudes are specified by 

The abbreviation 
W 

V T ’ =  
i = l  

is made for the individual bosons i comprising d” .  The two tensors u t )  and u y ’  
together form a single tensor transforming like the irrep (20) of S 0 ( 5 ) ,  as do VZ’ and 
VT). The coupling that selects the SO(5) scalar (00) from the Kronecker product 
(20) x (20) corresponds to the linear combination 

whose matrix elements are straightforward to work out. The results of these calculations 
are assembled in a similar way to the diagonal sum method used by Slater (1929) to 
calculate the Coulomb energies of the SL terms of an atomic configuration. 

4. The method exemplified 

We begin with the stretched state 

for which L and ML are set equal to their (common) maximum value, 2w+2. We can 
also write (1 1) in a form in which the individual ml values of each boson are specified, 
namely (22 . . . 2, 2’}s. The subscripted curly bracket indicates a state that is symmetrised 
and normalised. There are w numbers, all equal to 2, preceding the comma. The 
prime on the last 2 makes it clear that it corresponds to the d ’  boson. Now, on the 
one hand 

2 4 2 2  ( -2 0 ’)’+9w( 2 -2 0 2 ) =3w/10 (12) (22 . .  .2,2’},*s(22. . . 2 ,  2‘}s dT = 5 w  
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where (- l)x is a possible phase factor, and where Z is given by S = 
(dw(wO)l/ Ta2“’Ildw(w0))((10)II Tfo’ll(lO)). Although we cannot easily proceed further 
to find E, it turns out that we d o  not need to. 

We now lower ML and L one step at a time. For M L = 2 w + l ,  there are two 
possibilities for L, namely L = 2w + 2 and L = 2 w + 1. To determine how these are 
distributed among the irreps W’, we note that 

( W O )  x (10) = (w + l ,O)+(w,  l ) + ( w  - 1,O). (14) 

The relevant branching rules for SO(5) + SO(3) are 

(w + 1,O) + 9 2 w + 2 +  9 z w  + 9iZn--I + 9 1 W - 2 +  92%-3+292, - 4 + .  . . 

(w - 1,O) + 9*w-* + 9 2 n  -4  + . . . 
( w ,  l ) + ~ ~ , + , + a 2 , + 2 2 9 ~ , - , + 2 ~ 2 , - 2 + 3 ~ 2 , - ~ + 3 ~ , , . - , + .  . . (15) 

as may be confirmed from table (2-16 of Wybourne (1970). A general method for 
deriving equation (14) and the decompositions (15) is provided by the analysis of 
Williams and  h r s e y  (1968). Both (14) and (15) need to be modified for small values 
of w; however, it is convenient to work with the general forms and make allowance 
later for special cases. It can be seen from (15) that the state for which L = 2 w + 2  
occurs only in (w + 1,0) ,  while the state for which L = 2w + 1 occurs only in (w, 1). 
These two states are some pair of mutually orthogonal combinations of the boson states 

( 2 2 . .  f21, 2’}s, {22 . .  . 2 ,  l’}s. (16) 

Although it is easy enough to determine the mixtures in question, all we need is the 
sum of the two diagonal elements of S, which, following the method that has led to 
(12), evaluates to (w-5)/10. We already know from (12) that the state for which 
L = 2w + 2 contributes 3w/ 10, and so the other (that is, the state for which L = 2w + 1)  
must contribute -(2w+5)/10. A similar equation to (13) allows us to conclude that 

The method can be continued to yield further relations. It can be seen from the 
reductions (15) that ML has to be reduced three more steps to 2w - 2 before a 6-J 
symbol involving (w - 1,O) enters the working. The two intermediate steps merely 
provide checks on equation (17). However, the configuration d” provides not only 
the representation (WO) appearing in (13) but also (w - 2,0) ,  which, when coupled to 
(lo),  can also produce ( w -  1,O). It is not difficult to project out the unwanted state 
in order to relate the 6 - j  symbol 
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to those appearing in (17). It is easier, however, to determine (18) from the orthonor- 
mality condition 

(19) 
(WO) (10) W’ (WO) (10) W’ S(W, W’) 

W ’  D(W’){ (10) ( W O )  w I{ (10) (WO) W ’ j  = D( W )  

where D( W )  is the dimension of W’ (see, for example, Judd 1963, equation (5-64)). 
We can evaluate the second 6-j symbol in (19) when W ’ = ( O O )  by relating it to a 
stretched recoupling coefficient (whose absolute value is necessarily 1): 

{o; ::; (3 
= *[ D( lO)D( wo)l-1’2((( 10)(00))( IO), (WO), W’K IO), ((OO)( WO))(WO), W )  

= *[D(lO)D(wO)]-’” = * [6/( w + 1)( ~ + 2 ) ( 2 ~ + 3 ) ] ” ’ .  

Thus (19) can be used to relate the three 6-j symbols 

( W ’ = ( w + l , O ) ,  (wl) ,  (w-1,O)) {K; ::; (3 
to one another and also to normalise them. They are determined to within a phase factor. 

5. Generalisations 

It is straightforward to repeat the analysis above for arbitrary 1 rather than for 1 = 2. 
In this way we can find a number of 6-j symbols for S0(21+1). This generalisation 
gives us a method for fixing our immediate phases: we simply demand that our 6-j 
symbols for S0(21+ 1) reduce to those for SO(3) when we set 1 = 1. The SO(3) analogue 
of equation (14) is 

aw x 9 1  = aw+, + aw + aw-l 
which indicates that, for S0(21+ l ) ,  the irreps (WO. . . 0) and (w10. . . 0) both convert 
to aW when the specialisation 1 = 1 is made. The dimension formulae 

D( W O .  . . 0) = (2w +21- 1)( w +21-2)!/ w !  (21- l ) !  

D(Wl0. .  . 0) = w( w+21- 1)(2w +21- l ) (w +21-3)!/( w +  l ) !  (21 -2)! 

become D ( B W )  = 2 w + l ,  as they should. Our insistence on recovering the SO(3) 6-j 
symbols when 1 = 1 means that our phases are not necessarily coincident with those 
of Hecht (19671, but at least we have a self-consistent scheme that has an easily 
understood rationale. 

To avoid factorial functions of the type occurring in equations (20), we replace the 
generalised 6-j symbol by a U function U, for SO(21-t 1): 

(20) 

= [ D (  w3)D( Wg)]’/’{ w1 w’ ”1. 
w4 w 5  w6 

This is an extension (to within a phase factor) of the U coefficient of Jahn (1951). 
The loss of symmetry between the third column of the U function and the other two 
is more than offset by the ease of tabulation. 
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Table 1. Equations giving generalised 6-j  symbols, expressed as U functions, for S 0 ( 2 1 +  1) .  
The connection between w and U is U = 2 w  + 21 - 1.  Additional formulae for the U functions 
can be found by making the simultaneous substitutions ( 2 5 )  in a U function and U -* -U 
in the corresponding algebraic expression. An asterisk indicates that the algebraic 
expression must be multiplied by the overall factor of - 1 when this procedure is carried out. 

1 w  0 (21+ l )U(U - 2 1 + 3 )  U, 

(21 - l ) ( u  -21 + I ) (  U + 2 / -  1 )  1 4; w 0 )= - ( (21+1) (  U - 2 1 + 3 ) (  U + 2 1 - 3 )  

1 w, 1 

ut( 1 w 1 , l  

2(21-  1 )  

1 w  2 2(21+ l ) u ( u  - 2 1 + 3 j  

2 ( u 2  -4 )  

.(’ w w + l )  - - 2 ( 2 1 - 1 )  
1 w w + l  ~ ( ~ - 2 1 + 3 )  

4 (21-  1 )(U + 2 ) ( u  - 2 1  + 1 )  

1 w w , l  u ( u + 2 1 - 3 j ( u - 2 1 + 3 j 2  

u2[ u 2 -  ( 2 1 - 3 ) 2 ]  

( 1 w, 1 w - 1 , l )  = -([(U - 21+ 1)2 - 41) 
1 w - 1  w ( U  -21+ 1)2 

U, 

1 w - 1 , 1  w , l  2 

1 w 1 . 1  2( U - 2 1 + 3 )  

2( U - 21+ 3 )  

w t l ,  1 
2 ( u - 2 1 + 3 )  

H? 1, 1 w 

1 w + l  2 , l  21(u +21-  1 )  

( u - 2 1 + 1 )  I’2 1 ( w  1 , 1  w + l , l ) = - (  
1 w + l  2 , l  21(u + 2 1 -  1 j 

U, 

ut( 1 w + l  2.1  6 1 ( ~  +21 - 1 ) (  U + 2 )  
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Table 1. (continued) 

w 2 w + l , 1  u+61+1 
‘ I (  1 w + l  2 , l  ) = [ 6 1 ( ~ - 2 1 + 5 ) ( ~ + 2 1 - l ) 1 ’ : ’  

2 w + 2) = ((21 - 1 I (  U + 4)(u - 21 + 1)) ! I 2  

w + l  2 , l  31(u +2)(u -21+ 5)  

(21 - l ) (u  - 2)( U - 21+ 1) 
1 w + l  3 3(21+3)(u +2)(u  -21 + 5 )  

8( U -2)( U +4) 
1 w + l  3 3(21+3)( U +21- l ) (u  -21+5) 

ul( 2 w + 1 w + 1) = ((U - 2)(u +4)(u - 21+ l ) ( u  + 21 + 1)  
1 w  w U( U +2)(  U -21+3)( U +21- 1)  

4(21+ -2)(u +21+ 1)  
(U +2)(u  -21+3)(u +21- l ) (u+21-3)  w w  

8(21- 1)(21+1) 
1 w  w u ( u + 2 ) ( u + 2 r - i ) ( u + 2 ~ - 3 )  

4(21+ ])(U + 4 ) ( ~  - 21 + 1) 

2 w + l  8(21- l ) (u  -2)(u +21+ 1) 
1 w w + l , 1  u ( u  +21- l ) (u  +21-3)(u -21+ 5) Uf(  

8(21-1)(21+ 1) 

8(21- I ) ( u  + 4 ) ( ~  - 2 1 1  1) 

1 w w + 2  u ( u  +2)(  U -21+ 5 ) ( u  +21-3) 

The SO(2Zt- 1 )  6- j  symbols obtained as in § 4 can be rapidly augmented by using 
(a) the orthonormality relation (19) ,  suitably generalised, (b) the so-called Racah 
back-coupling relation (Butler and Wybourne 1976) and (c) the Biedenharn-Elliott 
identity. Our results are assembled in table 1. For the reason described in § 8, it is 
convenient to use U, defined by 

U = 2w+21-  1 (22) 

( W O  . . . 0) + w 

rather than w when setting up the algebraic formulae. The abbreviations 

(w10 . . .  O ) + w , l  

for the irreps of S0(2Z+ 1 )  are made in table 1. It is to be noted that the numerical 
value of w cannot be reduced to a point where either the triangular conditions are no 
longer satisfied or the irreps do not specify the highest weight. 
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6. Half-integral I 

The analysis has so far been limited to groups SO(n) for which n is odd. But just as 
Elliott (1958) showed how SO(6) could be used for the six orbital states of a d nucleon 
and an s nucleon, so may we introduce an s boson to increase the dimension provided 
by an 1 boson from 21+ 1 to 21+2. The result is that the formulae of table 1 remain 
valid provided all representations (WO..  . 0) and (w10.. . O )  of S0(21+2) end with a 
zero. Complications arise only for SO(4) and SO(2). For S0(4), equation (14) is 
replaced by 

( W O )  x (10) = ( w  + 1,O) + (w, 1) + (w, -1) + ( w  - 1,O) (23) 

in which the two representations (w, 1) and (w, -1) put in an appearance. The 
representation ( w l )  of SO(4) occurring in a 6- j  symbol listed in table 1 must thus be 
regarded as a superposition of (w, 1) and (w, -1). Properly speaking, we do not have 
a well defined U function at all; however we can interpret it as a linear combination 
of recoupling coefficients in which the bras and the kets correctly represent the required 
superposition. 

Since SO(4) is locally isomorphic to SO(3) x S0(3), it should be possible to relate 
the 6- j  symbols for these groups. To do this, we note that ( w1 w2) of SO(4) corresponds 
to 9a(l/2)(wl+w2) x 9a(1/2)lwl-w21 of SO(3) x SO(3). To illustrate the correspondence, we 
choose an example where the representations ( w l )  and (21) have to be regarded as 
the superpositions of (w, i l )  and (2, *l) respectively. We obtain 

1 f ( w + l ) ) u l ( ~ ( w l + l )  1 f (w-1)  
I )  

= f b , +  1) 
2 f W  2 I f W  z 1 

which, from table 1 and the formulae of Edmonds (1957), corresponds to 

w-3 2 w  w+3 - -- +- 
3(w+l )  3 (w+l )  3 ( w + l ) '  

SO(2) is too trivial a group to require special attention, but it is worth noting that 
the U functions of table 1 involving only representations of the type ( W O . .  . 0)-the 
only ones to have an SO(2) analogue-frequently reduce to 1 or 1/a when we set 
1 = f. This property can be understood in terms of the superposition principle just 
described for SO(4). 

7. The group G2 

Our interest in the Jahn-Teller effect makes the 6-j symbols of the groups SO(n) of 
prime wncem to us. However, our general method is not limited to such groups. We 
can easily extend the analysis of Q 4 to the group GZ by considering f bosons. The G, 
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scalars given by 
s 1 -  - vk". up 
s - v$) . up+ vk" , 
s - vk"' . u(2) + v y  , u(4) + v p  . 

2 -  B 

3 -  B 

are operators of the type Tk"' - T ( u )  , wh ere the G, representations U are (IO), (11) 
and (20) respectively. They can be used in the same way as the operator S of equation 
(10). The resulting 6-j symbols for G2 are set out in table 2. The chief interest here 
is that (20) occurs twice in the reduction of the Kronecker square ( w O ) ~  when w 3 2. 
There are therefore two columns headed (20); the one obtained with S, is labelled 
(20), , while the other, which had to be determined from the orthonormality conditions, 
is labelled (20), .  In analogy to equation (22), we have replaced 2 w + 5  by U in the 
actual tabulation. 

Unlike the situation for S O ( n ) ,  we cannot appeal to the signs of the SO(3) 
coefficients to fix our G2 phases. However, if we set w = 1 in table 2, several pairs of 
U coefficients are produced that are equivalent under the standard symmetry operations 
of a 6 - j  symbol. The limited arbitrariness in our phases is reduced by insisting that 
such U coefficients possess the same sign. The row for which U'= ( w - 1 , l )  cannot 
be checked in this way because (01) is not acceptable as a highest weight. Accordingly, 
we have included the phase factor 8 in all the entries for that row. It turns out that 
Racah's phases correspond to 8 = 1 but that subsequent calculations for other G2 6-j 
symbols require 8 = -1  if their invariance under the symmetry operations is to be 
preserved. 

Preliminary work on the symplectic groups Sp(2j + 1) indicates that there is no 
special difficulty in extending our method in that direction (Suskin 1985). The well 
known isomorphism Sp(4) = SO(5) allows us to relate representations (u1u2) of Sp(4) 
to (la, + fu2, fu, - fu2)  of S 0 ( 5 ) ,  thereby providing a means of finding 6-j symbols of 
SO( 5)  in which the spinor representations (involving half-integral weights) appear. A 
few special cases of these have been found by Payne and Stedman (1983, table A3). 
We are also making an effort to tackle the unitary groups, where the fact that many 
irreps are not self-adjoint produces some complications. As for the other exceptional 
groups (F4, E6, E, and E*), the absence of a pattern as simple as (14) and the far from 
obvious choice of angular momenta for the bosons make their study a formidable 
proposition. 

8. Jucys symmetries 

The symmetry of angular momentum theory under the substitution 1 += - 1  - 1 is well 
known, thanks to the extensive work of the Lithuanian school at Vilnius. Their results 
are summarised by Jucys and Savukynas (1973), who also describe the extensions from 
SO(3) to other Lie groups. An application to O ( 2 , l )  and the associated quasispin P 
has been made by Judd (1981). For the irrep ( w 1 w 2 . .  . w,) of S0(21+  l ) ,  any number 
of the independent substitutions 

wi + - wi - 21 - 1 + 2i 
are allowed. If we pick i = 1 ,  we can write 

(WO. . .  O ) + ( - w - 2 1 + 1 , 0 . .  .O) 

( w  + 1,o . . * 0) + (-( w + 1 )  - 21 + 1 , o  . . . 0) = (- w - 21,o . . . 0) 

( w 1 0 .  * .  O)+(-w-21+1,10 . . .  0) 



Algebraic expressions for SO( n )  and G2 2483 

0 

N . 
N - 

N 

0 

N . - 

N . - - 
- 1 -  - 

I 

- h h  
0 C O  



2484 B R Judd, G M S Lister and M C M O’Brien 

and so on. Such substitutions, made in a formula for a specified U function, merely 
change the appearance of the irreps occurring in the U function, but leave the algebraic 
expression for it untouched. However, we can now make the formal replacement 
w + - w - 21+ 1 everywhere, i.e. in both the U function and in the algebraic expression 
for it. When combined with the changes of the type (24), the irreps of the U function 
are transformed as follows: 

( W O  . . . 0) + ( W O  . * . 0) 

(w10. .  . O)+(wlO. .  . O )  

( w + 2 , 0 . .  . O ) + ( w - 2 , 0 .  * . O )  

( w + l ,  10 . . .  O ) + ( w - l ,  10 . . .  0) 

( w + l , O . .  . O ) + ( w - l , O . .  . O )  

( w - 1 , o . .  . O ) + ( w + l , O . .  . O )  

( w - 2 , o . .  . O ) + ( w + 2 , 0 . .  . O )  

(w-1, lO . . .  0 ) + ( w + 1 , 1 0 * . * 0 ) .  

(25) 

Owing to equation (22), the appropriate replacement for U in an algebraic expression 
is U -$ -U. For example, 

(U - 2)( U +4)  + (U +2)(  U -4). 

Although we have not used this kind of symmetry to evaluate our U functions, its 
existence enables us to almost halve the size of table 1. It does not, however, fix 
relative phases. When a sign reversal is called for the U function is asterisked in table 1. 

The situation is slightly different for G2 because of the oblique coordinate system 
used to define the highest weights. The algebraic expressions for the 6-j  symbol in 
table 2 again exhibit a symmetry under the interchange U - -U, but the substitutions 
(25) are replaced by 

( W O )  + ( W O )  ( w  * 1,O) + ( w  F 1,O) 

( w - l , l ) + ( w l )  ( w l ) - + ( w - l ,  1). 

9. Isoscalar factors 

If the U function of a group G is thought of as a recoupling coefficient, it is clear that 
it can be expressed as a linear combination of the U functions of a subgroup of G. 
The coefficients are quadruple products of isoscalar factors in which irreps of G and 
H appear. Take, for example, G = SO(7) and H = G,. Picking a particular U function 
of S 0 ( 7 ) ,  we get 

) (100) ( W O O )  (w10) 
W O O )  (100) (110) 

= ( ( ( W O O )  ( 100) 1 ( w 1 O ) ,  ( 100) 9 ( W O O )  I( WOO) 9 (( 100) ( 100) 1 ( 1 10) 1 ( WOO) ) 

x ((w10)u‘+(100)(10)~(w00)(w0))((100)(10)+(100)(10))(110)u”) 

x ( (woo) (wo)+ (11o)u ”~ (woo) (wo) ) .  (27) 

Following the work of Racah (1949), we can show that the four isoscalar factors in 
equation (27) are 

1 [ D( V ’ ) / D (  w10)]’/2 1 [ D (  u ” ) / D ( l l o ) ] l ~ *  
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respectively. Their product is thus known to within a phase factor. When the appropri- 
ate U functions are selected from tables 1 and 2 and inserted into equation (27), it is 
found that complete consistency is obtained provided the phase factor in question is 
taken to be + l .  This result confirms the assertion made at the beginning of this section. 
It also makes it clear that the choice of phases for the U functions of G and H imposes 
phase conditions on the isoscalar factors involving irreps of G and H. These may or 
may not conflict with choices already made in the literature. We have been anxious 
not to burden the reader (or ourselves, for that matter) with a formal analysis of phase 
conventions. The book of Butler (1981) shows how complex the situation can become 
just for finite groups. Particular problems demand particular solutions, and it seems 
to us that it would not be profitable to embark on a detailed discussion of phases at 
this time. 

10. Concluding remarks 

Among sources that provide checks on our analysis, we should mention the tabulation 
of 6-j  symbols for certain elementary irreps of U(n) given by Haase and Butler (1985). 
The isomorphism U(4) SO(6) implies the equivalence of the generalised 6-j symbols 
for U(4) and S0(6), and it is straightforward to verify that setting n = 4  in table I11 
of Haase and Butler (1985) produces 6-j symbols that coincide (to within a phase) 
with those determined from the functions U5,2 of our table 1 for certain special values 
of w. 

Although we have not considered in detail how to handle the multiplicity problems 
mentioned in § 1, our method can be used to set up equations that the 6-j symbols 
requiring multiplicity labels r must satisfy. For each triad ( r ’ I T ) r  an arbitrary 
separation must be made and carried forward in the synthesis of other 6-j  symbols. 
How best to do this will depend to some extent at least on the physical problem in 
hand. For the triad ((wO)(wO)(20)), of GZ, the separation corresponding to r = a, b 
of table 2 worked out well, the algebraic expressions of columns (20), and (20), being 
no more complex than others in the table. We cannot expect this happy state of affairs 
to be often repeated. 
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